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ABSTRACT

Panel Flutter and Sonic Fatigue Analysis for RLV

ChuhMei andGuangfengCheng
Departmentof AerospaceEngineering

Old Dominion University,Norfolk, Virginia 23529-0247

A methodologyis presentedfor the flutter analysisof the sealof thermal protection

system(TPS)panelof X-33 AdvancedTechnologyDemonstratortest vehicle. The seal is

simulated as a two-dimensional cantilevered panel with an elastic stopper, which is

modeled as an equivalent spring. This cantilever beam-spring model under the

aerodynamic pressure at supersonic speeds turns out to be an impact nonlinear dynamic

system. The flutter analysis of the seal is thus carried out using time domain numerical

simulation with a displacement stability criterion. The flutter boundary of the seal is

further verified with a family of three traditional and one nontraditional panel flutter

models. The frequency domain method that applies eigenanalysis on the traditional panel

flutter problem was used. The results showed that the critical dynamic pressure could be

more than doubled with properly chosen material for the base stopper. The proposed

methodology can be easily extended to three-dimensional panel seals with flow

angularity.
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FOREWORD

This technical report contains the research results on supersonic panel flutter analysis of

thermal protection system (TPS) seals. The research is sponsored by a NASA Langley

Research Center Grant NAG-1-2150, entitled "Panel Flutter and Sonic Fatigue Analysis

for RLV." Technical monitor is Dr. Max L. Blosser, Metal and Composite Thermal

Structures Branch, NASA Langley Research Center. Two journal publications have

resulted from this research grant: (1)"Nonlinear Response of Composite Panels Under

Combined Acoustic Excitation and Aerodynamic Pressure," AIAA Journal, Vol. 38, No.

9, 2000, pp. 1534-1542. and (2)"A Methodology for Supersonic Panel Flutter Analysis of

TPS Seals," accepted for publication and to appear in Journal of Aircraft, July 2001. The

authors are extremely thankful to Max Blosser for marly technical discussions and

suggestions.
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NOMENCLATURE
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= element and system aerodynamic influence

matrices

= beam width

= aerodynamic damping coefficient

= element nodal displacement vector

= Young's modulus

= impact force

= non-dimensional aerodynamic damping

= element and system aerodynamic damping

matrices

= beam thickness

= area moment of inertia

= equivalent spring stiffness

= element and system stiffness matrices

= beam length

= Mach number

= element and system mass matrices

= beam element shape functions

= aerodynamic pressure

= dynamic pressure

= element and system load vectors

= airflow speed

= transverse displacement

= transverse deflection at beam free end

= system nodal displacement vector

= panel damping rate

= non-dimensional eigenvalue

= non-dimensional dynamic pressure

= mass ratio

= beam and air mass densities

= eigenvector

= panel and reference frequencies

= complex panel motion parameter

iv



INTRODUCTION

Various methods have been employed to solve the panel flutter _'2 problem, which is

among the general considerations for designing structures under supersonic, hypersonic

conditions. In point of dynamics, the flutter boundary generally takes the form of critical

non-dimensional dynamic pressure. The solution means can be classified in two

categories: 3 frequency domain methods and time domain methods. While using finite

element analysis, frequency domain methods are feasible while the problem can be cast

as an eigenvalue problem. However, when it's mathematically difficult to execute

eigenanalysis, time domain methods can be applied for determining flutter. The

acceptability of the results depends on the numerical stability of the methods adopted.

The problem cited in this paper arises from the stability analysis of the seal of

superalloy honeycomb thermal protection system (TPS) panel of X-33 vehicle. 4 From the

blueprint of the seal for two adjacent TPS panels, a sketch was made and shown in Fig. 1.

The vibration of the covering seal is restrained with the neighboring panel. As the

overhead airflow speed increased, flutter will occur. The seal is restrained to move

downward by the top surface of the adjacent panel and a tiny gap (or zero gap) exists

between the seal and the adjacent panel. Therefore, a simplified two-dimension model for

the seal (flow angle A = 0 °) is idealized as a cantilever beam with a stopper below its free

end, as shown in Fig. 2. Accordingly, the problem turns out to be a vibration problem

with an impact at some amplitude.

If the stopper is very stiff so that it can be taken as a rigid stopper, the beam will

undergo impact force during its vibration and a restitution coefficient can be included to

allow for energy loss. 5 However, the stopper should be treated as elastic, then more



considerationsareneeded.For this case,anequivalentspringcanbeusedto replacethe

stopper.In investigationof the family of beamswith left end clamped,right end using

varioussupportsasshownin Fig. 3, flutter analysisof thespringstoppermodelaswell as

thebarstoppermodel, which is closerto real flutter problem,belongsto nontraditional

panel flutter analysis. In the presentpaper, time domain method is developedand

employedto solve this nontraditionalflutter problem. Apparently, flutter of model I,

model IV and model V in Fig. 3 is traditional panel flutter since eigenanalysisis

applicable.

The systematicproceduresof finite elementanalysiswere followed, considering the

aerodynamiceffect with quasi-steadyfirst-order piston theory. For the spring stopper

model,theequivalentspring stiffnessis from theassumptionthat thestopperundergoes

elastic deformation.Thus, the impact force is the restitution force of the equivalent

spring. Main interest is focusedon the variation of critical dynamicpressureversus

stopperstiffness.The flutter boundaryis comparedwith thoseof similar caseswith

simplerboundaryconditions.

FINITE ELEMENT FORMULATION

The classicalEuler-Bernoulli beam elementcan be extendedwith considerationof

aerodynamiceffects:additionalaerodynamicdampingandinfluencematricesneedto be

derived. The equationsof motion (EOM) which govern the motion of the beam are

derivedfrom theprincipleof virtual work.



Element Matrices and System Equations of Motion

From the quasi-steady first-order piston theory, the aerodynamic pressure applied on

the beam is

2q ?vii - 2 1

- (w_ + _- w,,) (1)
P' _-i ' Mff-I

El +_w,) (2)
or P,, :-(2-_-w,. bca0L •

where q = p,V:/2 is the dynamic pressure, V is the airflow speed, p_ is the air density,

Moo is the Mach number, and E, I, b, L are property parameters of the beam. The non-

dimensional dynamic pressure and aerodynamic damping coefficient are given by

2 - 2qL3b (3)
EI _M--f _ I

p.V(M_-2) --- 2_-f,,
g" phCOo(M_ - l) 3/2

(4)

where p is the mass density of the beam, a)0 = (EUpAL 4) t/2 is the reference frequency and

C_ is aerodynamic damping coefficient (Ca = g/Moo for M_>>I, and p = p_L/ph is the

mass ratio).

For Euler-Bemoulli element

thus, we have

w = LN, N_ N_ N_J(w, w x, w2 w,.,a)' = LNJ(d}

_2 w

aN LNJ. ,{a}w,., =LNI..,.,{a}w., =a-V

w.,=LN)d} w,, =LN]Id}

The strain energy of beam element is

(5)

(6)



he

U_ = _!El(w._x)2dx

where he is element length. Using Eqs. (6), the variation of strain energy can be expressed

as

he

=I dl uILNLLNj, . Idl
0

(7)

Similarly the virtual work done by external forces is

6W = II&v(P"a - phw..)dA +&vF -{6d} r °2og,, E,'L_ j'LNfLhJdx{a}_"
o

l _'I tie

coopAL_PhbILNj_LNJdx{a}+IadI_LNJ_{F'I
o

(8)

Use the principle of virtual work 6U_ = 6W_

U jLNfLNJdxla}+ {rid}r g" El "iLNj_LNjd×Id}(_d}_
COo o COo L4 o

tl e h e

+/_d/_ X_ILNfLNJ...d_Id} +/_dt _EZILNJT_LNj.._d×/d}= {_d}_LNJ_{F.}
o 0

(9)

Thus, the element EOM is

--_o [m ]{rl}+ -_o [g ]{d }+ ( R[a. ] + [K_ _){d }= {Q.}
(IO)

where the element matrices and load vector are

[m]=[g]=LE--_(!LNJ_LNJdx

[_,]-_-( iLNJ_LNJxd×
o

4



SIe

=Etj'LNLLNJ.,.,a 
0

{Q,}=LNJ_{Fo}

After assembling, the system EOM becomes

I [M_{W}+ g" [G]{W}+(2[A.]+[Kb{W}={Q},
COo COo

(LI)

Solution Procedures

While using frequency domain analysis to determine the critical dynamic pressure tbr

traditional self-excited panel flutter problem, the homogenous form of Eq. ( 11 ) is used:

1+,[M ]{'_}+ g'---L[G]{W} +(/_[A,,]+[K]){W}={O} (12)
COo COo

The flutterboundary can be easilyturned to be an eigenvalue problem by assuming the

response as:

{W} = {_}e n' (13)

where _ = o: + ico is generally a complex eigenvalue, (t and co are the panel damping rate

and frequency, respectively. By substitution of Eq. (13), Eq. (12) leads to a

nondimensional eigenvalue problem of the form

K'[M ] {q)} = (/'t.[,4, ] + [K]){_} (14)

where the nondimensional eigenvalue is

C/ f2
_-= -(--)+-- g°-- (15)

COo COo

This is because that the mass matrix [M] equals to the aerodynamic damping matrix [G]

as shown in Eq. (10). While there is no airflow, ,'t = ga = 0, the eigenvalues x are real and



positive corresponding to the square of natural frequencies of free vibration of traditional

panel systems (Model I, IV or V). As ,t. is increased in value monotonically from zero, the

symmetric, real stiffness matrix [K] is then perturbed by the skewed aerodynamic

influence matrix [A_] so that two of the eigenvalues approach each other until they

coalesce to the value X,:rat ,\ = ,1.,:r.

The aforementioned impact problem is not applicable to frequency domain analysis due

to the difficulty of describing the boundary condition at the free end (or the impact force).

Therefore, simulation <,f beam time response under airflow and impact force is hopeful to

unveil the flutter characteristic of the cantilever beam. The equivalent spring has a

stiffness of ks = EsAs/Ls with Es, As, Ls to be the Young's modulus, cross section area and

length of the stopper, respectively. Among those popular time integration schemes, the

Newmark-/3 method was adopted here for its stability. The initial conditions used are the

first bending mode normalized with Wm._,,/h = 0.1 and zero initial velocity. Time step

length At was decided on basis of a bisection strategy: the applied time step size is the

one giving slightly different critical dynamic pressure compared to the ,_:r attained by its

double. The ratio Wmax/h was checked at each time step for judgement of flutter

boundary. The upper limit of Wmax/h is 4.0, i.e., simulation will be ceased as Wma,,/h

equals to or is greater than 4.0. The impact force is

0 W_ >-GapF = -ks(I'V_ -Gap) W¢ <-Gap (16)

where We is the transverse deflection at the free end of the beam, Gap is the size of the

gap marked up in Fig. 2.
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RESULTS AND DISCUSSIONS

To validate the finite element model is to compare the results with available analytical

analysis results. However, it's found that for the five members in Fig. 3, no analytical

flutter boundaries are presented in literature. The alternative way adopted here is to check

the flutter boundaries of clamped-clamped beam, and both ends simply supported beam

with corresponding analytical results. 6 Figure 4 shows that for these two types of

supporting conditions (traditional flutter analysis), finite element analysis agrees well

with analytical analysis.

Then, the flutter behavior of a steel beam with dimension L = 1 in.( 0.0254 m ), b =

O. lin.( 0.00254 m ) and h = 0.006 in. ( 1.524X10 4 m ) was investigated. The beam was

discretized with 10 elements. To simulate the tiny gap between the beam free end and

stopper top, a gap size of Gap/h = 0.0001 was employed. Computation was carried out for

several distributed stiffness values within the range ks = 0-1.2x106 Ibf/in. ( 2. lx 108 N/m

), with the upper limit corresponding to steel beam versus steel stopper case. An

aerodynamic damping of Ca = 0.02 was assumed and used in the analysis.

Figure 5 is the critical dynamic pressure versus spring stiffness curve of the equivalent

spring model 1I. It shows the existence of an intermediate stiffness ranges roughly from

40 lbf/in.(7005 N/m) to 40,000 lbf/in. (7.0x 106 N/m), within which the critical dynamic

pressures are over 300. The right and left sides adjacent

to this range are low flutter boundary area having nearly same critical dynamic pressure

level as that of the cantilever

representative points A(ks=0.4,

beam (Fig.6). The time response, force history of

,t.=140), B (ks=2,000, ;t=300), C(ks=2,000, ,\=323),

D(ks=200,000, ,t.=138 ), E(ks=0.4, ,t.-°160 ), F( ks=200,O00, ,_.=150 ) are shown in Fig.



7-Fig. l 1, respectively. Stable time response has a decaying or limit cycle oscillation

response history (Fig. 7(a), Fig. 8(a) and Fig. 10(a)). Oppositely, unstable vibration

(flutter) is featured as either gradually divergence (Fig. 9(a)) or abrupt increase of WmJh

till the upper limit is reached soon (Fig. 11).

Point A is below the flutter boundary for low spring stiffness area. Therefore, as shown

in Fig. 7(a), the time response is stable. The spring is so soft that the stopper has little

effect on the vibrating beam. Thus the critical dynamic pressure is very near that of the

cantilever beam. This can also be verified by the force shape (Fig. 7(d)) of one whole

impact. The dominating frequency standing out in Fig.7 ( b ) is obviously close to the

coalescence frequency of cantilever beam as can be identified from Fig. 6 approximately.

While the stiffness increased to the intermediate stiffness area, the rebounce phenomenon

denoted by the force shapes in both Fig. 8 (d) and Fig. 9 ( d ) complicated the impact

process. Both the stable motion (Point B) and unstable motion (Point C) are dominated

by several modes, instead of the coalescence frequency, as shown in Fig. 8 ( b ) and Fig.

9 ( b ). However, it's found that the stiffer the spring stopper, the fewer the rebounce.

Point D is very close to the flutter boundary of ks = 200,000, which is ,L:r = 139.

Comparing the response Power Spectrum Density plots shown in Fig. 10(b) and Fig. 7(b),

they have very similar dominating frequency and shape. So the critical dynamic pressure

of point D should be close to that of low spring stiffness case. The beat phenomenon

observed from Fig. 10 ( a ) and ( b ) implies the lowest two modes are about to coalesce.

Figure 3 listed a family of left end clamped beams with ascending stopper stiffness.

Among these five types of beam, the flutter boundaries of cantilever beam (model I),

connected spring stopper beam (model IV) and right end simply supported beam (model



V) can be determined by frequency domain analysis. The results are shown in Fig. 6, Fig.

12 and Fig. 13, respectively.

Theother two models, spring stopper beam and bar stopper beam, are inapplicable to

frequency domain analysis. The bar stopper beam model is more alike the seal of X-33

TPS panel. The analysis of this model will help with understanding of the right-hand side

of the curve in Fig. 5, time domain analysis of it was also executed. The 0.25 in.(

0.00635m ) long bar stopper has a section area of 0. Ix0.1 in. 2 ( 6.451x10 -6 m" ) and is

modeled with 5 bar elements without damping (structural damping will effect the critical

dynamic pressure slightly). Learning of stopper material properties turns to be necessary.

Similarly, the Newmark-/3 method was used as time integration scheme. Results from

analyses of three types of stopper material are listed in Table 1 to show the trend of

flutte? boundary variation. Obviously, the drop of critical dynamic pressure as stiffness

increased to very stiff is confirmed.

Table 1 Critical dynamic pressure of bar stopper beam with the stopper

modeled as bar elements

Stopper Material • Boron Aluminum Steel

Density( lb/in j ) 0.083 0.098 0.283

Young's Modulus

Es ( msi ) 0.0638 8.99 30,2

Equivalent Spring Stiffness

ks=E_A_/L_ (lbf/in) 2.55x 10"_ 3.596x 105 1.2x 106

Critical Dynamic Pressure ,L:-r 322 140 137



Now that the flutter boundaries of all five member beams have been studied, the law

beyond them loomed. The cantilever beam with _L:-r=136 is both the down and up limit

cases of the clamped-spring stopper beam. The clamped-simply supported beam with ,k._

= 480 is the upper limit case of the connected spring stopper beam. This can be observed

from the right-hand end of the curve in Fig. 12. Both the spring stopper beam and

connected spring stopper beam exert constrain to the free end of the cantilever beam. So

they will enhance the flutter boundary due to stiffening of the whole dynamic system. It's

verified by the appearance of look-like ascending stages appeared in both Fig. 5 and Fig.

12. But the constrain from spring stopper is unidirectional, so spring stopper beam is

weaker than connected spring stopper beam which applies a bidirectional constrain to the

beam. The descending of flutter boundary is then reasonable. Analysis of bar stopper

beam proved this issue.

In summary, the flutter boundary curve shown in Fig. 5 exposed the character of the

original impact problem. The time domain analysis procedure was proved to be valid for

flutter analysis of systems with impact boundary conditions. However, it seems current

work accomplished only the prelude of a systematic work, since the practical problem has

inevitable effects from temperature, structural damping, etc.. While the model is

expanded to 3D plate and composite materials are considered, predictably, flow direction

effect needs attention.

1o



REFERENCES

1. E. H. Dowell, "Panel Flutter: Review of the Aeroelastic Stability of Plates and

Shells", AIAA Journal, Vol. 8, 1970, pp. 385-399.

2. C. Mei, K. Abdel-Motagaly and R. Chen, "A Review of Nonlinear Panel Flutter at

Supersonic and Hypersonic Speeds", Applied Mechanics Reviews, Vol. 52, No. 10,

1999, pp. 321-332.

3. R. C. Zhou, D. Y. Xue, and C. Mei, "Finite Element Time Domain-Modal

Formulation for Nonlinear Flutter of Composite Panels", AIAA Journal, Vol. 32,

1994, pp. 2044-2052.

4. M. L. Blosser, "Development of Metallic Thermal Protection Systems for the

Reusable Launch Vehicle", NASA Technical Memorandum 110296, Oct. 1996.

5. C. Toulemonde, "Periodic Behavior of Impact Oscillators: Single Degree of Freedom

and Multiple Degree of Freedom systems, Experiment", Proceeding of 1996

EUROMECH-2 "d European Nonlinear Oscillation Conference, Prague, pp.471-474.

European Conference Publications, P. O. Box 806, Cambridge CB4 4RT, United

Kingdom.

6. J. C. Houbolt, "A Study of Several Aerothermo- elastic Problems of Aircraft

Structures in High-Speed Flight", Ph. D. Thesis, EidenOssischen Technischen

Hochschule, The Swiss Federal Institute of Technology, Zurich, Switzerland, 1958.

11



I
i

t
l
I

"_ j,I

TPS Panel

Fig. 1 TPS panel configuration

12



Z,W

>X

Fig. 2 Cantilever beam with stopper

13



A v

I Free

I

II Spring Stopper (nonlinear system)

m

I

Bar Stopper (nonlinear system)

IV Connected Spring Stopper

I

V Simply Supported

Fig. 3 Various support conditions at the right end

14



4000 -

3500 - _ '_

_ oil X- Houb : c, = 635.1

b3000

2500

2000- _ ;# / ' /
_ ,oo_o,,:_o,__,,_.,/

1000 -
I I

I I
500 I i

Xc, = 636.6

O_ i I _ A I .... I .... I , , _ z ,
o 200 400 600 800

X

Fig. 4 Critical dynamic pressures: analytical method vs finite element analysis

15



35O

300

,,..250

2oo

150

100

• C

FLUTTER

E/ STABLE F

A D

I I I I I I I I 1,

10.2 104 10° 10 _ 102 103 104 10s 106

ks, Ibf/in.

Fig. 5 Flutter boundary of clamped-spring stopper beam

16



1600

1400

1200

1000

U
r 800

8

600

4OO

200

0 50 100
X

=136.0

150 2OO

Fig. 6 Cantilever beam critical dynamic pressure

17



2× 10" Time Response for k=0.4 _.=140

15

1

,E o,5

_o
-0.5

-1

-1.5

i i
"20 0.01 0.02

L !
0.03 0.04 0.05

t,Sec

2

N 1.5
"r

c

_0,5

10 -= Response PSD for k=0.4 X=140

, i 0'0 0'0 '1000 2 0 3 0 4000
Frequency,Hz

5000

(a) (b)

Force History For k=0.4 3_140×10 .7
2.5

2.0

1.5

-z-°

°5I I
O0 0 01 0 02 0 03 0 04 0.05

t, Sec

5.Ox10 .8

4.0

,6.3.0
__a

u."
2.C

1.C

0_)07'

Force Shape Fork=0.4 _=140

i I i i
0.0075'

t, Sec

L _ i J

0.008 ' '0.0085

(c) (d)

Fig. 7 Response & force characteristics of point A ( k=0.4 X=140 )

18



x 10"4 Time Response For k=2,000 k=300

6

5

4

,E3

1 i

oi
.11

i

"20 0.01 0.02 0. 3
t,Sec

i

0.04 ,.05

(a)

1.8 xlO"

Force History For k=2,000 _.=300

1.6

1.4

1.2

0.01 0.02 0.03 0.04 .05
t, Sec

(c)

8

_6

¢.

"g4
.-1

'_2

0
0

1.8x10 -4

104 Response PSD for k=2,000 ;k=300

o'o ' o'o '1 0 2000 3 0 4000
Frequency,Hz

(b)

5O0O

1.6

Force Shape For k=2,000 k=300

1.4

1.2

,_ 1.C
i

LEO.E

O.E

0.4-

0,2

0 %
|1 1 f . i II, . , , | , , ,

0.003 0.0032 0,0034
t, 5eo

(d)

).0036 0.0038

Fig.8 Response & force characteristics of point B(k=2,000 X=300)

19



20

15

10

5

104 Time Response For k=2,000 ;_=323

I I I I

"50 0.01 0.02 0.03 0,04 0.05

t,Sec

(a)

i 10]

13H

'on
o

Response PSD for k=2,000 >,=323

10'0o 2000 3000
Frequency,Hz

4000 5000

(b)

7.0

6.C

5.0

'*"4.0
..Q

I,I,,'3.0

2.0

1.0

0
0

Force History For k=2,000 Z=323
x10 -=

I

lil!lliIIll
0.01 0.02 0.03 0,04 0.05

t, See

7.0xl 0 `4

6.6

5.0

4.0

1,1,'3.0

2.0

1.0

0

Force Shape For k=2,000 ),=323

0.02 0,0205
t, Sec

(c) (d)

0.021

Fig. 9 Response & force characteristics of point C( k=2,000 ,[=323 )

2o



-0.5

x 104 Time Response For k=200,000 k=138

i

0.05 0.1 0.15

t,Sec

(a)

3,5!

_'_ 3

2.5

_,- 1.5

E
<:

1

0.5

0
0

104 Response PSD for k=200,000 t=138

,ooo 2000  doo ,o'oo
Frequency,Hz

(b)

5000

1.8x10 4

1,6

Force History For k=200,000 k=138

1.4

1.2

Io,,,,

j_ 1.0

U_0.8

0.6

0.4

0.2

, , I i [ , •

' 0.1 ' 0.15 0.2
t, Sec

(c)

4.5xi0 "S

Force Shape For k=200,000 _.=138

4.0

3.5

3.C

'_ 2.5

1.5

1.0

0.5

0
0.020968 0.020969 0.02097

t, Sec

(d)

Fig. 10 Response & force characteristics of point D( k=200,000 ,_=138 )

21



t

Time Response for k=0.4 ).=160

I I I

"50 0.005 0.01 0.015

t,Sec

(a)

I

0.02

Time Response For k=200,000 k=150

0.025

0

-1
0

A
I I I

0.005 0.01 0.015
t, Sec

(b)

0.02

Fig. 11 Time response for point E(a) and point F(b)

22



©

500 -

450 -

400 -

350 -

,_° 300 -

250 -

200 -

150
136

100

480

I I ! I I l

10 1 10 ° 101 102 103 104

k, Ibf/in.

Fig. 12 Flutter boundary of clamped-connected spring beam

23



30OO

25OO

2OOO

1500

IOO0

0

%

_1 t3.c,= 480.0

i ] r I l i _ J _ II i l i i I

250 _ 500 750

Fig. 13 Critical dynamic pressure of clamped-simply supported beam

24


